You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
inav-configurator/js/stm32.js

468 lines
19 KiB
JavaScript

var STM32_protocol = function() {
this.hex_to_flash; // data to flash
this.receive_buffer;
this.bytes_to_read = 0; // ref
this.read_callback; // ref
this.flashing_memory_address;
this.verify_memory_address;
this.bytes_flashed;
this.bytes_verified;
this.verify_hex = new Array();
this.upload_time_start;
this.steps_executed;
this.steps_executed_last;
this.status = {
ACK: 0x79,
NACK: 0x1F
};
this.command = {
get: 0x00, // Gets the version and the allowed commands supported by the current version of the bootloader
get_ver_r_protect_s: 0x01, // Gets the bootloader version and the Read Protection status of the Flash memory
get_ID: 0x02, // Gets the chip ID
read_memory: 0x11, // Reads up to 256 bytes of memory starting from an address specified by the application
go: 0x21, // Jumps to user application code located in the internal Flash memory or in SRAM
write_memory: 0x31, // Writes up to 256 bytes to the RAM or Flash memory starting from an address specified by the application
erase: 0x43, // Erases from one to all the Flash memory pages
extended_erase: 0x44, // Erases from one to all the Flash memory pages using two byte addressing mode (v3.0+ usart).
write_protect: 0x63, // Enables the write protection for some sectors
write_unprotect: 0x73, // Disables the write protection for all Flash memory sectors
readout_protect: 0x82, // Enables the read protection
readout_unprotect: 0x92 // Disables the read protection
};
// Erase (x043) and Extended Erase (0x44) are exclusive. A device may support either the Erase command or the Extended Erase command but not both.
};
// no input parameters
STM32_protocol.prototype.connect = function() {
var self = this;
selected_port = String($('div#port-picker .port select').val());
if (selected_port != '0') {
// parity and stopbit properties should be in chrome v30 or v31
chrome.serial.open(selected_port, {bitrate: 115200, parityBit: 'evenparity', stopBit: 'onestopbit'}, function(openInfo) {
connectionId = openInfo.connectionId;
if (connectionId != -1) {
console.log('Connection was opened with ID: ' + connectionId);
// we are connected, disabling connect button in the UI
GUI.connect_lock = true;
// start the upload procedure
self.initialize();
}
});
} else {
console.log('Please select valid serial port');
}
};
// initialize certain variables and start timers that oversee the communication
STM32_protocol.prototype.initialize = function() {
var self = this;
// reset and set some variables before we start
self.receive_buffer = [];
self.flashing_memory_address = 0x08000000;
self.verify_memory_address = 0x08000000;
self.bytes_flashed = 0;
self.bytes_verified = 0;
self.verify_hex = [];
self.upload_time_start = microtime();
self.steps_executed = 0;
self.steps_executed_last = 0;
GUI.interval_add('firmware_uploader_read', function() {
self.read();
}, 1, true);
GUI.interval_add('STM32_timeout', function() {
if (self.steps_executed > self.steps_executed_last) { // process is running
self.steps_executed_last = self.steps_executed;
} else {
console.log('STM32 - timed out, programming failed ...');
// protocol got stuck, clear timer and disconnect
GUI.interval_remove('STM32_timeout');
// exit
self.upload_procedure(99);
}
}, 1000);
// there seems to be 2 unwanted bytes in the parsed array, we will drop them now (WHY ???)
this.hex_to_flash.shift();
this.hex_to_flash.shift();
// first step
if ($('input.updating').is(':checked')) {
self.upload_procedure(0);
} else {
self.upload_procedure(1);
}
};
// no input parameters
// this method should be executed every 1 ms via interval timer
STM32_protocol.prototype.read = function() {
var self = this;
// routine that fills the buffer
chrome.serial.read(connectionId, 128, function(readInfo) {
if (readInfo && readInfo.bytesRead > 0) {
var data = new Uint8Array(readInfo.data);
for (var i = 0; i < data.length; i++) {
self.receive_buffer.push(data[i]);
}
}
});
// routine that fetches data from buffer if statement is true
if (self.receive_buffer.length >= self.bytes_to_read && self.bytes_to_read != 0) {
var data = self.receive_buffer.slice(0, self.bytes_to_read); // bytes requested
self.receive_buffer.splice(0, self.bytes_to_read); // remove read bytes
self.bytes_to_read = 0; // reset trigger
self.read_callback(data);
}
};
// Array = array of bytes that will be send over serial
// bytes_to_read = received bytes necessary to trigger read_callback
// callback = function that will be executed after received bytes = bytes_to_read
STM32_protocol.prototype.send = function(Array, bytes_to_read, callback) {
var bufferOut = new ArrayBuffer(Array.length);
var bufferView = new Uint8Array(bufferOut);
// set Array values inside bufferView (alternative to for loop)
bufferView.set(Array);
// update references
this.bytes_to_read = bytes_to_read;
this.read_callback = callback;
// send over the actual data
chrome.serial.write(connectionId, bufferOut, function(writeInfo) {});
};
// val = single byte to be verified
// data = response of n bytes from mcu (array)
// result = true/false
STM32_protocol.prototype.verify_response = function(val, data) {
if (val != data[0]) {
console.log('STM32 Communication failed, wrong response, expected: ' + val + ' received: ' + data[0]);
// disconnect
this.upload_procedure(99);
return false;
}
return true;
};
// input = 16 bit value
// result = true/false
STM32_protocol.prototype.verify_chip_signature = function(signature) {
switch (signature) {
case 0x412:
// low density
return false;
break;
case 0x410:
// medium density
console.log('Chip recognized as F1 Medium-density');
return true;
break;
case 0x414:
// high density
return false
break;
case 0x418:
// connectivity line
return false;
break;
case 0x420:
// medium density value line
return false;
break;
case 0x428:
// high density value line
return false;
break;
case 0x430:
// XL density
return false;
break;
default:
return false;
};
};
// first_array = usually hex_to_flash array
// second_array = usually verify_hex array
// result = true/false
STM32_protocol.prototype.verify_flash = function(first_array, second_array) {
for (var i = 0; i < first_array.length; i++) {
if (first_array[i] != second_array[i]) {
console.log('Verification failed on byte: ' + i + ' expected: 0x' + first_array[i].toString(16) + ' received: 0x' + second_array[i].toString(16));
return false;
}
}
console.log('Verification successful, matching: ' + first_array.length + ' bytes');
return true;
};
// step = value depending on current state of upload_procedure
STM32_protocol.prototype.upload_procedure = function(step) {
var self = this;
self.steps_executed++;
switch (step) {
case 0:
// reboot into bootloader mode
console.log('STM32 - Trying to jump into bootloader mode');
self.send([0x52]);
GUI.timeout_add('reboot_into_bootloader', function() {
self.upload_procedure(1);
}, 100);
break;
case 1:
// initialize serial interface on the MCU side, auto baud rate settings
self.send([0x7F], 1, function(reply) {
if (self.verify_response(self.status.ACK, reply)) {
console.log('STM32 - Serial interface initialized on the MCU side');
// proceed to next step
self.upload_procedure(2);
}
});
break;
case 2:
// get version of the bootloader and supported commands
self.send([self.command.get, 0xFF], 2, function(data) { // 0x00 ^ 0xFF
if (self.verify_response(self.status.ACK, data)) {
self.send([], data[1] + 2, function(data) { // data[1] = number of bytes that will follow (should be 12 + ack)
console.log('STM32 - Bootloader version: ' + (parseInt(data[0].toString(16)) / 10).toFixed(1)); // convert dec to hex, hex to dec and add floating point
// proceed to next step
self.upload_procedure(3);
});
}
});
break;
case 3:
// get ID (device signature)
self.send([self.command.get_ID, 0xFD], 2, function(data) { // 0x01 ^ 0xFF
if (self.verify_response(self.status.ACK, data)) {
self.send([], data[1] + 2, function(data) { // data[1] = number of bytes that will follow (should be 1 + ack), its 2 + ack, WHY ???
var signature = (data[0] << 8) | data[1];
console.log('STM32 - Signature: 0x' + signature.toString(16)); // signature in hex representation
if (self.verify_chip_signature(signature)) {
// proceed to next step
self.upload_procedure(4);
} else {
console.log('Chip not supported, sorry :-(');
// disconnect
self.upload_procedure(99);
}
});
}
});
break;
case 4:
// erase memory
console.log('Executing global chip erase');
self.send([self.command.erase, 0xBC], 1, function(reply) { // 0x43 ^ 0xFF
if (self.verify_response(self.status.ACK, reply)) {
self.send([0xFF, 0x00], 1, function(reply) {
if (self.verify_response(self.status.ACK, reply)) {
console.log('Erasing: done');
console.log('Writing data ...');
// proceed to next step
self.upload_procedure(5);
}
});
}
});
break;
case 5:
// upload
if (self.bytes_flashed < self.hex_to_flash.length) {
if ((self.bytes_flashed + 256) <= self.hex_to_flash.length) {
var data_length = 256;
} else {
var data_length = self.hex_to_flash.length - self.bytes_flashed;
}
console.log('STM32 - Writing to: 0x' + self.flashing_memory_address.toString(16) + ', ' + data_length + ' bytes');
self.send([self.command.write_memory, 0xCE], 1, function(reply) { // 0x31 ^ 0xFF
if (self.verify_response(self.status.ACK, reply)) {
// address needs to be transmitted as 32 bit integer, we need to bit shift each byte out and then calculate address checksum
var address = [(self.flashing_memory_address >> 24), (self.flashing_memory_address >> 16) & 0xFF, (self.flashing_memory_address >> 8) & 0xFF, (self.flashing_memory_address & 0xFF)];
var address_checksum = address[0] ^ address[1] ^ address[2] ^ address[3];
self.send([address[0], address[1], address[2], address[3], address_checksum], 1, function(reply) { // write start address + checksum
if (self.verify_response(self.status.ACK, reply)) {
var array_out = new Array(data_length + 2); // 2 byte overhead [N, ...., checksum]
array_out[0] = data_length - 1; // number of bytes to be written (to write 128 bytes, N must be 127, to write 256 bytes, N must be 255)
var checksum = array_out[0];
for (var i = 0; i < data_length; i++) {
array_out[i + 1] = self.hex_to_flash[self.bytes_flashed]; // + 1 because of the first byte offset
checksum ^= self.hex_to_flash[self.bytes_flashed];
self.bytes_flashed++;
self.flashing_memory_address++;
}
array_out[array_out.length - 1] = checksum; // checksum (last byte in the array_out array)
self.send(array_out, 1, function(reply) {
if (self.verify_response(self.status.ACK, reply)) {
// flash another page
self.upload_procedure(5);
}
});
}
});
}
});
} else {
console.log('Writing: done');
console.log('Verifying data ...');
// proceed to next step
self.upload_procedure(6);
}
break;
case 6:
// verify
if (self.bytes_verified < self.hex_to_flash.length) {
if ((self.bytes_verified + 256) <= self.hex_to_flash.length) {
var data_length = 256;
} else {
var data_length = self.hex_to_flash.length - self.bytes_verified;
}
console.log('STM32 - Reading from: 0x' + self.verify_memory_address.toString(16) + ', ' + data_length + ' bytes');
self.send([self.command.read_memory, 0xEE], 1, function(reply) { // 0x11 ^ 0xFF
if (self.verify_response(self.status.ACK, reply)) {
var address = [(self.verify_memory_address >> 24), (self.verify_memory_address >> 16) & 0x00FF, (self.verify_memory_address >> 8) & 0x00FF, (self.verify_memory_address & 0x00FF)];
var address_checksum = address[0] ^ address[1] ^ address[2] ^ address[3];
self.send([address[0], address[1], address[2], address[3], address_checksum], 1, function(reply) { // read start address + checksum
if (self.verify_response(self.status.ACK, reply)) {
var bytes_to_read_n = data_length - 1;
self.send([bytes_to_read_n, (~bytes_to_read_n) & 0xFF], 1, function(reply) { // bytes to be read + checksum XOR(complement of bytes_to_read_n)
if (self.verify_response(self.status.ACK, reply)) {
self.send([], data_length, function(data) {
for (var i = 0; i < data.length; i++) {
self.verify_hex.push(data[i]);
self.bytes_verified++;
}
self.verify_memory_address += data_length;
// verify another page
self.upload_procedure(6);
});
}
});
}
});
}
});
} else {
var result = self.verify_flash(self.hex_to_flash, self.verify_hex);
if (result) {
console.log('Verifying: done');
console.log('Programming: SUCCESSFUL');
// proceed to next step
self.upload_procedure(7);
} else {
console.log('Verifying: failed');
console.log('Programming: FAILED');
// disconnect
self.upload_procedure(99);
}
}
break;
case 7:
// go
// memory address = 4 bytes, 1st high byte, 4th low byte, 5th byte = checksum XOR(byte 1, byte 2, byte 3, byte 4)
console.log('Sending GO command');
self.send([self.command.go, 0xDE], 1, function(reply) { // 0x21 ^ 0xFF
if (self.verify_response(self.status.ACK, reply)) {
self.send([0x08, 0x00, 0x00, 0x00, 0x08], 1, function(reply) {
if (self.verify_response(self.status.ACK, reply)) {
// disconnect
self.upload_procedure(99);
}
});
}
});
break;
case 99:
// disconnect
GUI.interval_remove('firmware_uploader_read'); // stop reading serial
GUI.interval_remove('STM32_timeout'); // stop STM32 timeout timer (everything is finished now)
console.log('Script finished after: ' + (microtime() - self.upload_time_start).toFixed(4) + ' seconds');
console.log('Script finished after: ' + self.steps_executed + ' steps');
// close connection
chrome.serial.close(connectionId, function(result) {
if (result) { // All went as expected
console.log('Connection closed successfully.');
connectionId = -1; // reset connection id
} else { // Something went wrong
if (connectionId > 0) {
console.log('There was an error that happened during "connection-close" procedure');
}
}
// unlocking connect button
GUI.connect_lock = false;
});
break;
}
};
// initialize object
var STM32 = new STM32_protocol();